Nano Research & Applications ISSN 2471-9838 2021

Vol.7 No: S2

Sarika Patil Sharad Institute of Technology College of Engineering, India

Abstract

Nanomaterials were prepared using solution combustion method. These materials were further used as different parts of solid oxide fuel cell. In this report I have included synthesis and characterization of anode, cathode and electrolyte materials and also fuel cell testing report (open circuit voltage). Anode materials: NiO-GDC, CuO-NiO-GDC, NiO-Al2O3, and AFL/NiO-GDC, cathode material: La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), and electrolyte material:

Gd0.1Ce0.9O1.95 (GDC). The conductivity of anode functional

layer (NiO-Al2O3) in biogas is 160 x 10-3 S/cm and of CuO-NiO-GDC in biogas is 35 x 10-3 S/cm. The SOFC formed with CuO-NiO-GDC anode exhibits OCV of 0.92 V at 500 oC and the OCV of the cell with NiO-GDC as anode is 0.7 V at 500 oC. The single cell (CuO-NiO-GDC/GDC/LSCF) can achieve highest power density 11.38 mW/cm2 and highest current density 31.68 mA/cm2 at 800 oC.

Biography

Sarika Patil studied Sharad Institute of Technology College of Engineering, Yadrav, Kolhapur, India